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Orthogonality of modal bases in hp finite element models

V. Prabhakar and J. N. Reddy∗,†

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, U.S.A.

SUMMARY

In this paper, we exploit orthogonality of modal bases (SIAM J. Sci. Comput. 1999; 20:1671–1695)
used in hp finite element models. We calculate entries of coefficient matrix analytically without using
any numerical integration, which can be computationally very expensive. We use properties of Jacobi
polynomials and recast the entries of the coefficient matrix so that they can be evaluated analytically.
We implement this in the context of the least-squares finite element model although this procedure can
be used in other finite element formulations. In this paper, we only develop analytical expressions for
rectangular elements. Spectral convergence of the L2 least-squares functional is verified using exact
solution of Kovasznay flow. Numerical results for transient flow over a backward-facing step are also
presented. We also solve steady flow past a circular cylinder and show the reduction in computational
cost using expressions developed herein. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The past two decades have witnessed a great deal of progress in the area of computational fluid
dynamics. A large number of methods have been proposed for the numerical solution of the Navier–
Stokes equations governing flows of viscous incompressible fluids. Direct discretization includes
finite difference and finite volume techniques, mixed finite element methods using conformal
and non-conformal elements, and spectral methods. Finite element method and its derivatives
(e.g. least-squares finite element model, spectral/hp finite element model) have gained popularity in
the recent times.

∗Correspondence to: J. N. Reddy, Department of Mechanical Engineering, Texas A&M University, College Station,
TX 77843, U.S.A.

†E-mail: jnreddy@tamu.edu

Contract/grant sponsor: Air Force Office of Scientific Research; contract/grant number: F49620-03-1-0201

Copyright q 2007 John Wiley & Sons, Ltd.



1292 V. PRABHAKAR AND J. N. REDDY

In the finite element method, we select basis functions to approximate dependent variables and
perform coordinate transformation to evaluate the coefficient matrices. On the basis of polynomial
order used, the finite element models can be divided into two groups: low-order expansions
(order less than three) and high-order expansion (order higher than three). Most of the finite
element implementations use low-order expansions because they require less computational time
per degree of freedom, and convergence is achieved by refining the mesh. On the other hand, high-
order expansions demonstrate exponential convergence. If high accuracy is required then we can
justify using high-order expansions by the fact that the error will converge at a faster rate than the
increase in the operation count. Therefore, ultimately it is more efficient to use high-order methods.
Nevertheless, the cross-over point between the required accuracy and relative cost of low- and
high-order methods for a given application is a point of much debate. A further argument presented
for using high-order methods is the numerical diffusion and the enhanced phase properties that
these schemes demonstrate [1, 2].

In the context of least-squares finite element models, low-order nodal expansions have been
found to lock and reduced integration is used to obtain acceptable numerical results. In this case,
resulting coefficient matrix is nearly singular. Furthermore, the numerical solution may not be
smooth at the nodes and post-processing is needed to recover nodal values from the reduced
integration points. Pontaza and Reddy [1, 3] presented spectral/hp least-squares finite element
models and Prabhakar and Reddy [4] presented spectral/hp penalty least-squares finite element
models. They combined the idea of least-squares method with spectral/hp methods, and the models
performed well in solving Navier–Stokes equations.

Having outlined the need for high-order expansion basis, we need to decide the types of
expansion bases used. Many types of high-order expansion bases can be found in the literature.
Peano [5] constructed a hierarchical triangular basis using area coordinates. A variation of this
construction was later developed by Szabo and Babuska [6] that introduced Legendre polynomials
to avoid round-off error for high-order p-expansions. However, both approaches require special
integration rules which are quite complicated at high polynomial order. Dubiner [7] first developed
an alternative hierarchical basis for triangular domains that is based on cartesian coordinates.
Dubiner’s basis was implemented by Sherwin and Karniadakis [8] using a Galerkin finite element
model of the Navier–Stokes equations, and it was found to be competitive in cost with the nodal
basis on quadrilaterals employed in the spectral element method [9]. Warburton et al. [10] developed
a unified description of hybrid basis functions. They developed five types of basis functions that
are either modal, nodal or mixed, and which may or may not be hierarchical.

In this paper, we implement hierarchical modal bases. Hierarchical bases can lead to better
conditioning of mass and coefficient matrices [11]. We implement these bases in the context of
least-squares finite element model of the Navier–Stokes equations [1, 3]. As described earlier,
high-order expansions require more work per degree of freedom (during Gauss quadrature). In this
paper, we exploit orthogonality of Jacobi polynomials, and calculate integrals without using any
numerical quadrature rule. We recast the terms of the coefficient matrix using the properties of
Jacobi polynomial and evaluate them exactly. For rectangular elements, coefficient matrix entries
are written in alternative forms and analytical expressions are developed to calculate them exactly.
It is to be mentioned that multidimensional shape functions are constructed using tensor product
of 1-D shape functions. Limitation of the procedure developed here is that it can be used for
rectangular elements.

The present paper is organized as follows. In Section 2, we review the least-squares finite
element formulation for the steady incompressible Navier–Stokes equations. The Navier–Stokes

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1291–1312
DOI: 10.1002/fld



ORTHOGONALITY OF MODAL BASES IN hp FINITE ELEMENT MODELS 1293

equations are recast as first-order system using vorticity as additional dependent variable, and
then the finite element formulation for these first-order systems is presented. In Section 3, we
present a couple of properties associated with Jacobi polynomials and use them to evaluate the
entries of coefficient matrix. Then, in Sections 4 and 5 we recast entries of coefficient matrix for
1-D and multidimensional cases and evaluate them analytically. We implement primary boundary
conditions by inverting mass matrix, description of which is given in Section 6. In Section 7,
we present space–time decoupled least-squares formulation. Numerical results are presented in
Section 8. The spectral convergence is verified using the Kovasznay flow solution. Numerical
results are presented for transient 2-D flow over a backward-facing step. We compare results with
the benchmark solution of Gartling [12] and Pontaza and Reddy [3]. Lastly, we consider the
flow past a circular cylinder at low Reynolds number and compare the predicted surface pressure
distribution with the experimental measurements of Grove et al. [13].

2. LEAST-SQUARES FINITE ELEMENT FORMULATION

The steady incompressible Navier–Stokes equations in dimensionless form can be written as
follows:

(u · ∇)u + ∇ p − 1

Re
∇ · [(∇u) + (∇u)T] = f in � (1)

∇ · u = 0 in � (2)

u = us on �u (3)

n̂ · r = fs on � f (4)

where u(x) is the velocity vector, p(x) is the pressure, r=−pI+1/Re[(∇u)+ (∇u)T] is the total
stress, f is a dimensionless force, n̂ is the outward unit normal on the boundary of �, us is the
prescribed velocity on the boundary �u , and fs is the prescribed boundary stress on the boundary
� f , �=�u ∪ � f and �u ∩ � f = ∅, and Re is the Reynolds number.

To reduce the system to first order, we introduce vorticity vector as an independent variable.
We make use of the vector identity

∇ × ∇ ×u= −∇2u + ∇(∇ · u)

Then determining the solution of the stationary Navier–Stokes equations, Equations (1)–(4), can
now be stated as:

find the velocity u(x), pressure p(x), and vorticity x(x) such that

(u · ∇)u + ∇ p + 1

Re
∇ ×x = f in � (5)

x− ∇ ×u = 0 in � (6)

∇ · u = 0 in � (7)

u = us on �u (8)

x = xs on �� (9)
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1294 V. PRABHAKAR AND J. N. REDDY

The L2 least-squares functional associated with the velocity–pressure–vorticity equations
presented above is given by

J(u, p,x; f) = 1

2

(∥∥∥∥(u · ∇)u + ∇ p + 1

Re
∇ ×x− f

∥∥∥∥
2

0
+ ‖x− ∇ ×u‖20 + ‖∇ · u‖20

)

(10)

The least-squares principle can be stated as one of finding (u, p,x)∈X such that for all (v, q,w)∈X
J(u, p,x; f)�J(v, q,w; f) (11)

holds, where

X= {(u, p,x) ∈H1
0(�) × H1(�) ∩ L̄2(�) ×H1(�)}

The Euler–Lagrange equations associated with this minimum principle are equivalent to the
following variational problem: find (u, p,x) ∈X such that for all (v, q,w) ∈X

B((u, p,x), (v, q,w))=F((v, q,w)) (12)

where

B((u, p,x), (v, q,w))

=
∫

�

(
(u0 · ∇)u + ∇ p + 1

Re
∇ ×x

)
·
(

(u0 · ∇)v + ∇q + 1

Re
∇ ×w

)
d�

+
∫

�
(x− ∇ ×u) · (w− ∇ × v) d� +

∫
�
(∇ · u)(∇ · v) d�

and

F((v, q,w))=
∫

�
f ·
(

(u0 · ∇)v + ∇q + 1

Re
∇ ×w

)
d�

We have used Picard method, where we linearize equations first and then minimize the least-
squares functional.

2.1. Finite element model

The finite element model is obtained by restricting (12) to a finite-dimensional subspace Xhp of the
space X. Then, the discrete least-squares finite element model for the incompressible Navier–Stokes
equations is given by the following discrete variational problem:

find (uhp, php,xhp) ∈Xhp such that for all (vhp, qhp,whp) ∈Xhp

B((uhp, php,xhp), (vhp, qhp,whp))=F((vhp, qhp,whp)) (13)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1291–1312
DOI: 10.1002/fld



ORTHOGONALITY OF MODAL BASES IN hp FINITE ELEMENT MODELS 1295

For details, see Pontaza and Reddy [3]. This procedure leads to the following system of equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[S11 + S22] [S12 − S21] [0] [S20]
[S21 − S12] [S11 + S22] [0] −[S10]

[0] [0] [S11 + S22] 1

Re
[S12 − S21]

[S02] −[S01] 1

Re
[S21 − S12] 1

Re2
[S11 + S22] + [S00]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

{vx }
{vy}
{P}
{�z}

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[C00(v)] [0] [C01(v)] 1

Re
[C02(v)]

[0] [C00(v)] [C02(v)] − 1

Re
[C01(v)]

[C10(v)] [C20(v)] [0] [0]
1

Re
[C20(v)] − 1

Re
[C10(v)] [0] [0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

{vx }
{vy}
{P}
{�z}

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

{F1}
{F2}
{F3}
{F4}

⎞
⎟⎟⎟⎟⎟⎟⎠

C00
i j (v) =

∫
�e

CiC j dx dy, Ci = vx
��i

�x
+ vy

��i

�y

C01
i j (v) =

∫
�e

Ci
�� j

�x
dx dy, C02

i j (v) =
∫

�e
Ci

�� j

�y
dx dy

C10
i j (v) =

∫
�e

��i

�x
C j dx dy, C20

i j (v) =
∫

�e

��i

�y
C j dx dy

S00i j =
∫

�e
�i� j d�

S01i j =
∫

�e
�i

�� j

�x
dx dy, S02i j =

∫
�e

�i

�� j

�y
dx dy

S10i j =
∫

�e

��i

�x
� j dx dy, S20i j =

∫
�e

��i

�y
� j dx dy

S11i j =
∫

�e

��i

�x

�� j

�x
dx dy, S22i j =

∫
�e

��i

�y

�� j

�y
dx dy

S12i j =
∫

�e

��i

�x

�� j

�y
dx dy, S21i j =

∫
�e

��i

�y

�� j

�x
dx dy
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F1
i =

∫
�e

Ci fx dx dy

F2
i =

∫
�e

Ci f y dx dy

F3
i =

∫
�e

(
��i

�x
fx + ��i

�y
fy

)
dx dy

F4
i =

∫
�e

1

Re

(
��i

�y
fx − ��i

�x
fy

)
dx dy

We proceed to develop a discrete problem by choosing appropriate finite element subspaces for
the velocity, pressure and vorticity. There are no restrictive compatibility conditions on the discrete
spaces, so we choose the same finite element subspace for each of the primary variables. The only
requirement on the approximating spaces is that we choose continuous piecewise polynomials.

Modal expansion: In the standard interval �st ={�| − 1<�<1} modal expansions are defined as

�i (�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − �

2
, i = 1(

1 − �

2

)(
1 + �

2

)
P�,�
p−2, 2� i � p, p� 2

1 + �

2
, i = p + 1

(14)

In definition (14), P�,�
p are the Jacobi polynomials of order p. We use ultraspheric polynomials

corresponding to the choice � = �= 1. Multidimensional modal expansions are constructed by
taking tensor product of 1-D modal expansions. An important property of Jacobi polynomials is
their orthogonal relationship given by the following equation:∫ 1

−1
(1 − x)�(1 + x)�P�,�

p (x)P�,�
q (x) dx =C�pq (15)

where the value of C depends on �, � and p, and it has the value

C = 2�+�+1

2p + � + � + 1

�(p + � + 1)�(p + � + 1)

p!�(p + � + � + 1)
(16)

Other notable property is that the multidimensional shape functions are constructed by taking
tensor product of 1-D shape functions. These two properties make the computation of coefficient
matrix very fast. The shape functions in 2-D are given below.

Interior modes:

�interior
mn =

(
1 + �

2

)(
1 − �

2

)
P1,1
m−1(�)

(
1 + �

2

)(
1 − �

2

)
P1,1
n−1(�)

Vertex modes:

�vertex1 =
(
1 − �

2

)(
1 − �

2

)
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�vertex2 =
(
1 + �

2

)(
1 − �

2

)

�vertex3 =
(
1 + �

2

)(
1 + �

2

)

�vertex4 =
(
1 − �

2

)(
1 + �

2

)

Edge modes:

�
edge1
m =

(
1 + �

2

)(
1 − �

2

)
P1,1
m−1(�)

(
1 − �

2

)

�
edge2
n =

(
1 + �

2

)(
1 − �

2

)(
1 + �

2

)
P1,1
n−1(�)

�
edge3
m =

(
1 + �

2

)(
1 − �

2

)
P1,1
m−1(�)

(
1 + �

2

)

�
edge4
n =

(
1 − �

2

)(
1 − �

2

)(
1 + �

2

)
P1,1
n−1(�)

Figure 1 shows 1-D modal expansions of order 5. Expansion modes �0 and �P are the same
as the linear finite element expansion. These are boundary modes since they are the only modes
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Figure 1. Shape of modal expansion modes for a polynomial order of P = 5.
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1298 V. PRABHAKAR AND J. N. REDDY

which have magnitude at the ends of the interval. The remaining interior modes are zero at the
ends of the interval and increase in polynomial order as is typical in a hierarchical expansion. This
setting helps implementing boundary conditions.

3. ORTHOGONALITY OF MODAL BASES

Modal bases defined above consist of Jacobi polynomials which are orthogonal polynomials satis-
fying condition (15). In Figure 2, non-zero entries of (�i , � j ), (�i , d� j/d�) and (d�i/d�, d� j/d�)

in 1-D for P = 9 are plotted, where

(�i , � j ) =
∫

�i� j d� (17)

etc.; (�i ,� j ) has 32 non-zero entries out of 100. Rest of the entries are zero by the virtue of
orthogonality of Jacobi polynomials; (�i , d� j/d�) has 22 non-zero entries while (d�i/d�, d� j/d�)

has 12 non-zero entries. Analytical expressions will be developed to compute these non-zero entries
without using any quadrature rule.

In Figure 3, non-zero entries of (�i ,� j ), (�i , �� j/��), (��i/��, �� j/��), (��i/��, �� j/��)

in 2-D for P = 9 are plotted. In 2-D, (�i , � j ), (�i , �� j/��), (��i/��, �� j/��), (��i/��, �� j/��)

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

(a) (b)

(c)

Figure 2. Non-zero entries of: (a) (�i , � j ); (b) (�i , d� j/d�); and (c) (d�i/d�, d� j/d�).
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Figure 3. Non-zero entries of: (a) (�i ,� j ); (b) (�i , d� j/d�);
(c) (d�i/d�, d� j/d�); and (d) (d�i/d�, d� j/d�).

have 1024, 704, 484 and 384 non-zero entries, respectively, out of 10 000. These entries can be
computed analytically for rectangular elements.

To exploit these orthogonality relationships while computing coefficient matrix, we need to recast
stiffness matrix entries in a slightly different form. We will first state the following relationships
which will be useful later. For a proof of these equalities, see [14].
Relation 1
All Jacobi polynomials, P�,�

n (x), satisfy a three-term recurrence relation of the form

x P�,�
n (x)= a�,�

n−1,n P
�,�
n−1(x) + a�,�

n,n P
�,�
n (x) + a�,�

n+1,n P
�,�
n+1(x) (18)

where a�,� depends only on �, � and n. For � = � = 1, a�,�
n,n = 0 and the above equation can be

written as

x P�,�
n (x)= a�,�

n−1,n P
�,�
n−1(x) + a�,�

n+1,n P
�,�
n+1(x) (19)

or, for the sake of compactness, we rewrite the above equation by dropping � and � as we consider
� = �= 1 only

x Pn(x)= a1(n)Pn−1(x) + a2(n)Pn+1(x) (20)
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1300 V. PRABHAKAR AND J. N. REDDY

where

a1(n) = n + 1

2n + 3
(21)

and

a2(n)= (n + 1)(n + 3)

(n + 2)(2n + 3)
(22)

Relation 2
All Jacobi polynomials, P�,�

n (x), satisfy a three-term recurrence relation of the form

(1 − x2)
dP�,�

n (x)

dx
= c�,�

n−1,n P
�,�
n−1(x) + c�,�

n,n P
�,�
n (x) + c�,�

n+1,n P
�,�
n+1(x) (23)

where c�,� depends only on �, � and n. For � = � = 1, c�,�
n,n = 0 and the above equation can be

written as

(1 − x2)
dP�,�

n (x)

dx
= c�,�

n−1,n P
�,�
n−1(x) + c�,�

n+1,n P
�,�
n+1(x) (24)

Again, for the sake of compactness, we rewrite the above equation by dropping � and � and
considering � = � = 1 only

(1 − x2)
dPn(x)

dx
= c1(n)Pn−1(x) + c2(n)Pn+1(x) (25)

where

c1(n) = (n + 1)(n + 3)

(2n + 3)
(26)

and

c2(n)= 2n(n + 1)(n + 3)

(2n + 3)(2n + 4)
(27)

4. ONE-DIMENSIONAL CASE

Let us recast entries of coefficient matrix using the following relationships:

∫
�p�q d� =

∫
(1 − �)

2

(1 + �)

2
Pp

(1 − �)

2

(1 + �)

2
Pq d�

= 1

16

∫
(1 − �)(1 + �)PpPq d� −

∫
(1 − �)(1 + �)�2PpPq d�
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�2Pq = �[�Pq ]
= [a1(q)�Pq−1 + a2(q)�Pq+1]
= a1(q)[a1(q − 1)Pq−2 + a2(q − 1)Pq ] + a2(q)[a1(q + 1)Pq + a2(q + 1)Pq+2]
= a1(q)a1(q − 1)Pq−2 + [a1(q)a2(q − 1) + a2(q)a1(q + 1)]Pq

+ a2(q)a2(q + 1)Pq+2

∫
(1 − �)(1 + �)�2PpPq d� = a1(q)a1(q − 1)�p,q−2C1

+[a1(q)a2(q − 1) + a2(q)a1(q + 1)]�p,qC2

+ a2(q)a2(q + 1)�p,q+2C3

∫
�p

d�q

d�
d� = 1

16

∫
(1 − �)(1 + �)Pp

d[(1 − �2)Pq ]
d�

= 1

16

∫
(1 − �)(1 + �)Pp

[
(1 − �2)

dPq
d�

− Pq2�

]
d�

= 1

16

∫
(1 − �)(1 + �)Pp(1 − �2)

dPq
d�

d�

− 2

16

∫
(1 − �)(1 + �)Pp�Pq d�

A =
∫

(1 − �)(1 + �)Pp[c1(q)Pq−1 + c2(q)Pq+1] d�

= c1(q)�p,q−1C1 + c2(q)�p,q+1C2

B =
∫

(1 − �)(1 + �)Pp[a1(q)Pq−1 + a2(q)Pq+1] d�

= a1(q)�p,q−1C1 + a2(q)�p,q+1C2

∫
�p

d�q

d�
d� = A − 2B

16

Here, C1, C2 and C3 are given by Equation (16). We calculate (d�/d�, d�/d�) term using the
Gauss quadrature.
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5. MULTIDIMENSIONAL CASE

One of the notable property of modal bases used here is that multidimensional basis functions are
constructed by taking tensor product of 1-D basis functions. So they can be separated. Separation
is particularly easy when we use orthogonal grid. For rectangular elements jacobian matrix is of
the form (see, Reddy [15, 16])

J =

⎛
⎜⎜⎝

h1
2

0

0
h2
2

⎞
⎟⎟⎠

and global derivatives of shape functions are⎛
⎜⎜⎜⎝

��e
i

�x

��e
i

�y

⎞
⎟⎟⎟⎠= J−1

⎛
⎜⎜⎜⎝

��e
i

��

��e
i

��

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

2

h1

��e
i

��

2

h2

��e
i

��

⎞
⎟⎟⎟⎠

where ��e
i /�� and ��e

i /�� are local derivatives of shape functions. We will use this representation
to develop analytical expressions of entries of coefficient matrix.

Multidimensional shape functions are constructed by taking the tensor product of 1-D shape
function

�i (�, �) → �p,q(�, �) = �p(�)�q(�)

� j (�, �) → �r,s(�, �) = �r (�)�s(�)

�k(�, �) → �m,n(�, �) = �m(�)�n(�)

The entries of the coefficient matrix can now be rewritten as∫
�i� j dx dy =

∫
�i (�, �)� j (�, �)J d� d�

= J
∫

�p(�)�r (�) d�
∫

�q(�)�s(�) d�

∫
�i

�� j

�x
dx dy =

∫
�i (�, �)

2

h1

�� j (�, �)

��
J d� d�

= J
2

h1

∫
�p(�)

��r (�)

��
d�
∫

�q(�)�s(�) d�

∫
��i

�x

�� j

�x
dx dy =

∫
2

h1

��i (�, �)

��

2

h1

�� j (�, �)

��
J d� d�

= J
4

h21

∫ ��p(�)

��

��r (�)

��
d�
∫

�q(�)�s(�) d�
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∫
��i

�x

�� j

�y
dx dy =

∫
2

h1

��i (�, �)

��

2

h2

�� j (�, �)

��
J d� d�

= J
4

h1h2

∫ ��p(�)

��
�r (�) d�

∫
�q(�)

��s(�)

��
d�

All these 1-D integrals can be calculated analytically using expressions developed in the previous
section.

Nonlinear term C02
i j (v) can be written as

∫
Ci

�� j

�y
dx dy =

∫ (
U

��i

�x
+ V

��i

�y

) �� j

�y
dx dy

=
∫ (

U
��i

��

2

h1
+ V

��i

��

2

h2

) �� j

��

2

h2
J d� d�

=
∫ ∑

Uk�k
��i

��

2

h1

2

h2

�� j

��
J d� d� +

∫ ∑
Vk�k

��i

��

2

h2

2

h2

�� j

��
J d� d�

∫ ∑
Uk�k

��i

��

�� j

��
d� d� =∑

(
Uk

∫
�m

��p

��
�r d�

∫
�n�q

��s

��
d�

)

All these 1-D integrals are evaluated using the 1-D Gauss quadrature rule.
We have recast all the entries of coefficient matrix except C00

i j , which we calculate using the
2-D Gauss quadrature.

5.1. Computer implementation

In multidimensions, shape functions are constructed by taking tensor product of 1-D shape
functions. To use orthogonality we again separate them into 1-D shape functions. In 1-D we
have vertex and interior modes. All the derivation presented earlier is for interior modes consisting
of Jacobi polynomials. Shape functions for the vertex modes can be written as

(
1 − �

2

)
= 1

2

(
P1,1
0 − P1,1

1

2

)

Thus, vertex modes in 1-D can be written as 1
2 (P

1,1
0 −�i P

1,1
1 /2), where �i takes the values of ±1.

Now previous derivations can be used for vertex modes also.

6. IMPLEMENTATION OF BOUNDARY CONDITIONS

Since the modal basis functions do not satisfy interpolation and partition of unity properties,
boundary conditions must be interpolated using some technique. Here, the boundary conditions
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are implemented using the least-squares method. Suppose u = f (x) on �. We approximate f (x)
with g(x) such that

f (x)≈ g(x)=
n∑
j=0

C j� j (x)

where � j are the same shape functions that are used to interpolate dependent variables in our
formulation. Above equation is written for an element boundary �e that coincides with domain
boundary �. We assemble global coefficient matrix obtained by this equation as

E = g(x) − f (x)

E2 = (C j� j − f,Ck�k − f )

We minimize the square of the error with respect to C j and obtain

�(E)2

�Ck
= 2(C j� j − f, �k) = 0

⇒ (C j� j , �k) = ( f,�k) ⇒ AC = B

where

Akj = (�k� j ) =
∫

� j (x)�k(x) dx

Bk = ( f,�k) =
∫

f (x)�k(x) dx

7. TIME-DEPENDENT PROBLEMS

For time integration, space–time coupled or space–time decoupled methods can be used. Here, we
consider space–time decoupled formulations. In space–time decoupled formulations, discretization
in space and time are carried out independently. Generally, the time derivatives are represented
by a truncated Taylor series in time. Least-squares functional for backward multi-step scheme of
order M� can be written as

J(u, p,x; f) = 1

2

⎛
⎝
∥∥∥∥∥ 	0
�t

us+1 −
M�−1∑
q=0

�q
�t

us−q + (u0 · ∇)u + ∇ p + 1

Re
∇ ×x− f

∥∥∥∥∥
2

0,�×(0,
]

+ ‖x− ∇ ×u‖20,�×(0,
] + ‖∇ · u‖20,�×(0,
]

⎞
⎠ (28)

where 	0 =∑M�−1
q=0 �q for consistency, �q are weights associated with a particular multi-step

scheme, �t = ts+1 − ts is the time increment.
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8. NUMERICAL EXAMPLES

In this section, we present numerical results obtained with the proposed formulation. First, we verify
spectral convergence. Next, we present results for the transient 2-D flow over a backward-facing
step and steady flow past a circular cylinder at low Reynolds number.

8.1. Verification: Kovasznay flow

The benchmark problem to be used for the purpose of verification of the least-squares-based finite
element models is an analytical solution to the 2-D steady incompressible Navier–Stokes due to
Kovasznay [17]. Domain of interest is �̄=[−0.5, 1.5]× [−0.5, 1.5]. The solution is given by

u = 1 − e�x cos(2�y) (29)

v = �

2�
e�x sin(2�y) (30)

p = p0 − 1
2e

2�x (31)

where � =Re/2 − (Re2/4 + 4�2)1/2 and p0 is a reference pressure (an arbitrary constant).
We perform a p-refinement study. We fix spatial discretization and systematically increase

the order of polynomial used in each element. The discretization is a non-uniform mesh of
eight quadrilateral finite elements. We choose the L2 least-squares functional as error measure.
Convergence of this measure to zero implies that the L2 norm of the governing equations converges
to zero.

We use eight non-uniform quadrilateral elements for spatial discretization. The exact solu-
tion given by Equations (29) and (30) is used to prescribe Dirichlet boundary conditions. The
system is linearized using Picard’s method (direct iteration method) and the resulting symmet-
ric positive-definite (SPD) system of equations are solved using conjugate gradient method with
Jacobi preconditioner. Nonlinear convergence is declared when

∑ndf
n=1‖�Un‖/‖Un‖ is less than

10−4, where ndf is the total number of degrees of freedom in the mesh and U is the solution vector
(includes all degrees of freedom at a node). Convergence of conjugate gradient is declared when
error is less than 10−6.

Figure 4(a) shows streamlines for Kovasznay flow and Figure 4(b) shows pressure contours. To
verify spectral convergence, we plot L2 norm of least-squares functional J against polynomial
order for vorticity-based first-order formulation in Figure 5. On logarithmic-linear scale we get
almost straightline showing exponential decay of least-squares functional.

8.2. Transient flow over a backward-facing step

We next consider a 2-D flow over a backward-facing step at Re= 800. The geometry and boundary
conditions are taken from the benchmark solution of Gartling [12] and they are shown in Figure 6.
No-slip boundary condition is imposed on all walls. Boundary condition of u(y)= 0 is imposed
for −0.5� y � 0.0. A parabolic velocity profile given by u(y)= 24y(0.5 − y) is specified at the
inlet for 0.0� y � 0.5. This produces a maximum inflow velocity of umax = 1.5 and a mean inflow
velocity of uavg = 1.0. The Reynolds number is based on the mean inflow velocity. We impose
outflow boundary condition in a weak sense through the least-squares functional [3]. For long
domains, the strong outflow boundary condition p= 0 also gives good results. However, we prefer
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Figure 4. Kovasznay flow: (a) streamlines; and (b) pressure contours for Re= 40.
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Figure 7. Flow over a backward-facing step at Re= 800: (a) streamlines; and (b) pressure contours.

the weak imposition of outflow boundary conditions. Initial condition is zero velocity everywhere
in the domain.

The domain, �̄=[0, 25]× [−0.5, 0.5], is discretized using 22 finite elements as shown in
Figure 6. To accurately resolve the primary and secondary circulation zones, we use a non-
uniform grid. A ninth-order modal expansion is used in each element, resulting in a total of 7600
degrees of freedom in the mesh. The resulting discrete model is linearized using Picard’s method.
At each Picard step, the linear system of equations, involving a SPD coefficient matrix, is solved
using the conjugate gradient method with a Jacobi preconditioner. Convergence of the conjugate
gradient method is declared when the norm of the residual is less than 10−6. Nonlinear convergence
is declared when the relative norm of the residual in solution vector is less than 10−4. A time
increment of 0.2 is used to march in time.

Figure 7 shows the streamlines and pressure contours for 0� x � 15, where most of the pheno-
mena of interest occur. The primary reattachment length is approximately 6.10, while the secondary
separation and reattachment lengths approximately 4.9 and 10.4, respectively. Figure 7(b) shows
the pressure contours. After reattachment of the upper wall eddy, the flow slowly recovers towards
a fully developed Poiseuille flow. The flow is almost fully developed at the exit with no pressure
gradient in y direction. This is because the outlet boundary condition of p= 0 also gives identical
results.

Figure 8 shows evolution of velocity field with time. The main flow coming from the inlet
follows a sinuous path, forming a series of eddies along the upper and lower wall. Initial velocity
field is taken to be zero everywhere in the domain. At t = 400, the relative norm of the residual
in velocities between two consecutive time steps was less than 10−4, indicating that a steady state
was achieved.

Figure 9 shows a plot of the L2 least-squares functional as a function of time. Initially, there
is some fluctuation but fluctuations damp with time and the functional stabilizes at a value of
3× 10−3.

8.3. Steady flow past a circular cylinder at low Reynolds number

Next, we consider steady 2-D flow of an incompressible fluid past a circular cylinder. The
Reynolds number is taken to be 40, for which a steady-state solution exists. Domain of interest
is [−10.0, 15.0]× [−10.0, 10.0]. The x-component of inlet velocity (u) is specified to be 1.0 and
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Figure 8. Time history streamline plots for flow over a backward-facing step at Re= 800.

the y-component (v) is set to zero. Symmetry boundary conditions, �z = 0 and v = 0, are imposed
on the top and bottom walls. The outflow boundary conditions are imposed in a weak sense through
the least-squares functional.

Figure 10 contains a close-up view of the geometric discretization around the circular cylinder.
We generate orthogonal grid (rectangular elements) everywhere in the domain except around the
cylinder. One layer of body fitting grid is generated around the cylinder. In order to accurately
represent the curved boundary, we implement an isoparametric formulation; i.e. we use the same
expansion order to interpolate dependent variables and the geometry.
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Figure 9. Time history of the L2 least-squares functional.
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Figure 10. Close-up view of geometric discretization around the cylinder.

We use 2-D steady incompressible Navier–Stokes equations in the vorticity-based first-order
form and with a ninth-order modal expansions in each element. The resulting discrete model
consists of a total of 209 196 degrees of freedom. The value of the L2 least-squares functional
remains below 10−4.

Figures 11 and 12 contain plots of the contours of streamlines and pressure, respectively, in
the wake region for Re= 40. The value of the recirculation length is found to be 4.55 cylin-
der radius. The present result is in good agreement with the numerical value of 4.55 cylinder

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1291–1312
DOI: 10.1002/fld



1310 V. PRABHAKAR AND J. N. REDDY

-2 0 2 4

Y

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 11. Streamlines in the wake region for flow past a circular cylinder at Re= 40.
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Figure 12. Pressure contours for flow past a circular cylinder at Re= 40.

radius by Pontaza and Reddy [3]. Dennis and Chang [18] reported a recirculation length of 4.69
cylinder radius.

A comparison of the experimental values of the surface pressure coefficient distribution along
the cylinder surface with the computed values is shown in Figure 13. Experimental values are
taken from Grove et al. [13]. The present results are in good agreement with the experimental
measurements. Drag coefficient is calculated to be CD = 1.55, which is in good agreement with
the published results of Tritton [19], who reported a value of 1.56.

Actual CPU time depends on the implementation (data structure, node numbering, etc.) and vary
from one implementation to other. To give the reader a feeling of the algorithmic performance,
we report the speed-up obtained by using proposed orthogonal modal bases.
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Figure 13. Pressure coefficient distribution along the cylinder
surface for flow past a circular cylinder at Re= 40.

Polynomial order (P) Speed-up (tnon-ortho/tortho)

7 2.1
9 3.1

11 4.5

At this point, we want to remind the reader that we recast all the terms of coefficient matrix except
C00
i j term associated with rectangular elements. We evaluated C00

i j using the 2-D Guass quadrature.

Calculation of other nonlinear terms C01
i j ,C02

i j ,C10
i j ,C20

i j is also computationally expensive as they
involve do-looping even though we calculate them by performing 1-D Gauss quadrature. Most
of the time is consumed in computing these terms only. For curved elements, we performed 2-D
Guass quadrature for all the terms of coefficient matrix.

9. CONCLUDING REMARKS

In this paper, a method to exploit orthogonality of modal bases in order to avoid numerical
integration and have a fast computation is presented. The entries of coefficient matrix are calculated
analytically. The properties of Jacobi polynomials are used and most of the entries of coefficient
matrix are recast so that they can be evaluated analytically. This strategy is implemented in the
context of least-squares finite element model, although this procedure can be used in other finite
element formulations. The equations are linearized using direct iteration method (Picard method).
Analytical expressions are developed for rectangular elements. Spectral convergence of the L2
least-squares functional is verified using the exact solution of the Kovasznay flow. Numerical
results are presented for unsteady flow over a backward-facing step. Also, the steady flow past a
circular cylinder is analysed and it showed reduction in computational cost.
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All the terms of coefficient matrix were recast except C00
i j term. This term was evaluated using

the 2-D Guass quadrature. Also the 1-D Gauss integration is performed for ((��/��)��/��),
which is quite fast as it is 1-D integration, and 2-D and 3-D expressions ((��/��)��/��) can be
calculated by making use of the 1-D expression without the use of numerical integration. Other
than these two Gauss quadratures, no numerical integration is used to evaluate the coefficients.

Limitation of this procedure is that it can be used only for rectangular elements. For skew
elements, it is not possible to separate multidimensional integrals (entries) into 1-D integrals.
Therefore, one may choose to use analytical expressions to evaluate entries for rectangular elements
and use quadrature for curved elements.
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